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Abstract. Cubic and hexagonal symmetries are observed in molecular dynamics simulations of lithium
chloride unconstrained nanoclusters, using the Born-Mayer-Huggins (BMH) potential model. Phase changes
between the two solid phases, and solid-liquid coexistences, are studied for LiCl clusters with a number of
ions ranging from 1000 to 5292. A stability analysis of the clusters and bulk systems, at 0K, is presented,
using the BMH and the Michielsen-Woerlee-Graaf (MWG) potential models. The cubic structure from the
BMH model is slightly more stable than the hexagonal one for cluster sizes between 1000 and ∼10 000 ions.
For higher cluster sizes and bulk LiCl the opposite is true. Moreover, at 0 K, the bulk cubic phase from the
MWG potential is significantly more stable than the hexagonal one. Thus, the BMH potential model seems
unrealistic for large clusters and the bulk as far as a comparison with experiment is concerned. Finally,
a fairly good correlation of the simulation results is obtained by means of a theoretical model recently
reported by us.

PACS. 61.46.+w Nanoscale materials – 64.70.Nd Structural transitions in nanoscale materials – 64.70.Kb
Solid-solid transitions

1 Introduction

Phase changes and phase coexistences in clusters have mo-
tivated a growing interest due to the theoretical challenges
and the importance of their study in different fields, such
as, nucleation, crystal growth, structure of amorphous ma-
terials, catalysis and atmospheric chemistry. The works on
simple systems (like argon) [1–5], alkali halides [6–13], and
metals [14–20], are just a few examples of the wide interest
of this subject.

As an exact statistical mechanical theory to explain
the behaviour of these systems constitutes a desirable but
yet unattained objective, some approximated theoretical
models have been proposed to correlate simulation and
experimental data, and to predict new results [17,21–29].

Different solid phases in clusters have also been re-
ported, for example, by Li and Huang [30] for iron and by
Schebarchov and Hendy [31,32] for nickel and palladium.
Moreover, experimental and theoretical works concerning
solid(fcc)-solid(bcc) transitions in ionic salts under high
pressure [33–35] have been presented, and Woodcock [36]
has noted a solid(sc)-solid(bcc) transition for the bulk ce-
sium chloride, whose energetics was studied by Pyper [37].

In the course of a previous work [38], the evolution
of the temperature as a function of the total energy in
clusters of lithium chloride, particularly for the 4096 ions
size, suggested the possibility of different solid phases, al-
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though we have not developed the subject hitherto. The
suggestion turned out by the observation of pronounced
oscillations in the temperature through the phase coexis-
tence regions.

The objective of the present work is to identify and
characterise cubic and hexagonal symmetries in LiCl clus-
ters by means of extensive MD simulations, and to analyse
the results in the light of a theoretical model developed
by us [29].

Recently, Croteau and Patey [39], motivated by the
ab initio calculations of Aguado et al. [12], have reported
the existence of cubic and ring-hexagonal solid symme-
tries in (LiCl)N clusters, with N ranging from 3 to 500,
also using the BMH potential. Although the present study
is based on a considerable higher number of ions and a
more extensive analysis, some of our conclusions are in
accordance with theirs.

The computational details are given in Section 2. Sec-
tion 3 is devoted to the identification and characterisation
of the different solid phases. Section 4 presents a further
analysis of the simulation results. Section 5 contains the
conclusions of this work and perspectives of future devel-
opments.

2 Computational details

Most of the molecular dynamics computations have
been performed using the Born-Mayer-Huggins (BMH)
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with the parameters given by Watts and McGee [40].
However, in order to analyse the relative stability of

the clusters at 0 K we have also done some calculations
with the Michielsen-Woerlee-Graaf (MWG) potential:
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with the parameters given by Michielsen et al. [41] for
l = 4 and m = 1.

It is well-known that these interaction models, despite
being rigid-ion potentials, reproduce some bulk properties
of alkali halides and other substances [42–48]. Recently,
we have reported [49] an extensive study, by molecular
dynamics and free energy calculations, of the phase dia-
grams for KCl and NaCl, using those models.

Verlet’s leapfrog algorithm [50] for the numerical inte-
gration of Newton’s equations of motion, with a time step
of 5 × 10−15 s, has been used in all simulations. Thermal
properties have been calculated with a number of steps
in the range 105–108, depending on the size of the clus-
ters and the phase transition region. Thus, the longer runs
correspond to time scales of the order of 102 ns. The de-
termination of the velocity auto-correlation functions has
been based on runs of 1.6× 104–4× 106 time steps with a
time origin at every fifth step.

As the clusters are unconstrained, the external pres-
sure, p, is virtually zero. The calculation of each state
point has been carried out by fixing the total energy, E,
of the system and determining the corresponding average
temperature, T (through the energy equipartition theo-
rem [51]), instead of fixing a preset average temperature
and calculating the resulting average total energy, as ex-
plained elsewhere [38,52]. The present calculations are,
therefore, performed with the variables (n, p, E) fixed
(n is the number of ions), not strictly in the context
of the microcanonical ensemble (n, V , E) since the vol-
ume V is not constant. We should underline that there
is nothing unusual in conducting constant-energy instead
of constant-temperature simulations. Both approaches are
able to detect phase transition regions in clusters. They
also produce similar results for homogeneous phases. This
is not so, however, specially at phase transition regions.
In fact, it has been shown [21,22] that constant-energy
and constant-temperature ensembles are not equivalent
for finite systems such as nanoparticles. For example, a
hallmark of constant-energy calculations is the negative
values of the heat capacity at the coexistence regions, as
seen in previous simulations [14,29,38,52] as well as in
the present ones. Nonetheless, it turns out that constant-
-energy simulations are more suitable to assess some im-
portant aspects of phase changes in clusters, such as phase
coexistences and their properties. The method of fixing
the total energy of clusters was also used, for instance, by
Briant and Burton [1], Cleveland et al. [23] and Nielsen
et al. [14].

Table 1. Number of ions (n) and heating/cooling rates
(109 kJmol−1 s−1): (a) initial simulations [38]; (b) current sim-
ulations.

n (a) (b)
1000 0.5 0.1
1728 3.7 0.5
2744 4.3 1.4
4096 4.3 1.4
5832 4.3
8000 4.3

The starting states for the heating processes have been
f.c.c (rock salt) and hexagonal lattices at 0 K, with the
appropriate number of ions for each kind of lattice. For
the freezing, we have used two distinct starting points:
(a) a totally melted configuration; (b) a configuration not
completely melted containing residual crystallites [52].

Heating/cooling rates in the range 0.1–4.3 ×
109 kJmol−1 s−1 (∼1010–1013 Ks−1) have been used.
These rates were chosen in order to maintain the system
as close to equilibrium as possible within the limits of
computational expense.

3 Identification of the phases

Although our previous results for lithium chloride clus-
ters [38] suggested the presence of more than one solid
phase, they were insufficient for a thorough analysis
mainly due to the high heating rates used. Therefore,
we have performed improved simulations with lower heat-
ing/cooling rates (see Tab. 1). This is an essential detail
since the appearance of the hexagonal phase is only oc-
casional for the higher rates, becoming systematic for the
lower ones.

The temperature as a function of total energy, for
different cluster sizes, is represented in Figure 1, where
the starting states for the heating curves have been cu-
bic structures (cut from a perfect rock salt crystal). The
heating curves starting from hexagonal structures shall be
treated ahead.

The new results show well distinguishable “plateaus”
connected by abrupt slopes. In order to confirm that, for
a given cluster size, these features correspond to different
phases, snapshots have been collected from each “plateau”
in the neighbourhood of the slopes that connect them. Fig-
ure 2 displays snapshots for the 1728 ions cluster in con-
venient perspectives. In addition to the symmetry change,
there are some other noticeable differences, such as: the
liquid phase wets more extensively the hexagonal phase
than the cubic one; the cubic structure appears in a dis-
torted form that is wider near the liquid phase; the profile
of the liquid wetting the cubic phase is similar to the one
over a pair of contiguous faces in the hexagonal structure.

Figure 1 also shows some regular behaviours: (i) during
heating, lithium chloride presents a double phase transi-
tion, cubic → cubic + liquid → hexagonal + liquid; (ii)
spontaneous nucleation (see Ref. [52]) of the supercooled
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Fig. 1. (Color online)
Temperature as a func-
tion of total energy for
LiCl clusters of 1000,
1728, 2744 and 4096
ions, showing the occur-
rence of more than one
solid phase. (ch) Cubic
heating; (cc) cubic cool-
ing; (hh) hexagonal heat-
ing; (hc) cooling with
residual hexagonal nu-
clei; (lc) liquid cooling;
(c> h) cubic to hexag-
onal; (h > l) hexagonal
to liquid; (l < c) liquid
to cubic. Arrows indi-
cate the directions of
the heating and cooling
paths.

Fig. 2. Cubic and hexagonal symmetries in the 1728 ions clus-
ter of LiCl during the melting starting from a cubic solid.

liquid droplet occurs, always, with the formation of a cu-
bic structure; and (iii) for the lower cooling rates, as in the
1000 ions cluster, a double transition, liquid → cubic +
liquid → hexagonal + liquid, at fixed energy, is observed.

The last feature is consistent with the nucleation of the
hexagonal phase in the liquid over the cubic phase, since
no direct spontaneous liquid → hexagonal + liquid transi-
tion is observed. Thus, the cubic + liquid → hexagonal +
liquid transition mechanism seems to have an intermedi-
ate step where the two solid phases coexist with the liquid.
Then, due to the growth of the hexagonal phase, the tem-
perature shall increase until the cubic phase is completely
melted. However, since this is a relatively fast process, fur-
ther refined calculations are needed to clarify such details.

The presence of the two phases can also be observed in
the liquid molar fractions of Figure 3, obtained by means
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Fig. 3. Liquid molar fractions obtained during the melting of
LiCl clusters with 1728 and 2744 ions.

of the method based on the velocity autocorrelation func-
tions reported elsewhere [38].

It is noteworthy that the general trends of the transi-
tions from the cubic to hexagonal structures, in Figure 1,
agree, qualitatively, with the entropy driven rearrange-
ments claimed by Croteau and Pattey [39]. However, they
do not report coexistent phases, certainly due to the small
sizes of their clusters.
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(a) Side view (b) Front view

Fig. 4. Hexagonal structure of a 2100 ions LiCl solid cluster
at 600 K.

3.1 Hexagonal phase

To study the hexagonal phase, closed shell aggregates have
been built and the minimum energy configurations deter-
mined. As an hexagonal structure have different symmetry
elements, the relation between the number of concentric
hexagonal shells and the number of planes is not trivial.

The number of particles for closed shells aggregates,
like the one in Figure 4, is given by

n = nph × 6 ×
nch∑
i=1

(2i − 1) (3)

where nph is the number of hexagonal planes and nch is
the number of concentric shells of hexagons. That is

n = 6nph (nch)
2
. (4)

The study made until now (for nph between 1 and 20
and nch between 1 and 10) has allowed to identify the
1152, 2100, 3456, 5292 and 7680 cluster sizes as the lowest
total energy configurations at 600 K. The minimum energy
values suggest the rule:

nph = 2(nch + 2) (5)

whence
n = 12

[
(nch)

3 + 2 (nch)
2
]
. (6)

Figure 5 and Table 2 present the total energies of these
hexagonal clusters and of cubic clusters in the same range
of sizes. Since it is not possible, in general, to simulta-
neously build closed shell aggregates for the cubic and
hexagonal structures with the same number of particles,
an indirect comparison is made by representing the energy
as a function of n−1/3. The comparison suggests that for
large clusters and bulk systems the hexagonal structures
have slightly lower energies than the cubic ones, at 600 K.
The free energies, at 0 K, represented in Figure 6 and
Table 3, indicate that the hexagonal structure is slightly
more stable than the cubic one for large clusters and bulk
systems (the values of the bulk have been calculated using
Ewald’s sum for each solid symmetry). Since there is no
experimental evidence of this behaviour, it appears that
the BMH interaction model is unrealistic as far as large
clusters of LiCl are concerned. We shall return to this
problem ahead.
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Fig. 5. Total energy, at 600 K, for LiCl aggregates (see Tab. 2).
The lines are guides to the eye.

Table 2. Number of ions (n) and total energy (in kJmol−1)
at 600 K for cubic and hexagonal LiCl clusters.

Cubic Hexagonal
n E n E

1000 −801.958 1152 −801.980
1728 −803.896 2100 −804.320
2744 −805.304 3456 −805.740
4096 −806.338 5292 −806.876

7680 −807.642
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Fig. 6. Gibbs energies, at 0 K, for LiCl aggregates and the
corresponding bulk systems (see Tab. 3). The lines are guides
to the eye.

Table 3. Number of ions (n) and Gibbs energy (in kJmol−1),
at 0 K, for LiCl aggregates and the corresponding bulk systems.

Cubic Hexagonal
n E n E

1000 −834.186 1152 −834.074
1728 −836.042 2100 −836.200
2744 −837.342 3456 −837.654
4096 −838.308 5292 −838.714
5832 −839.052 7680 −839.514
8000 −839.648
∞ −844.774 ∞ −845.456
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cluster of LiCl. The arrow indicates the transition from the
cubic to hexagonal structures.

(a) Side view (b) Front view

Fig. 8. Asymmetric hexagonal variety of a 2100 ions LiCl clus-
ter at 600 K.

Figure 7 displays the melting behaviours of a (initially
cubic) cluster with 4096 ions and a (initially hexagonal)
cluster with 3456 ions. The higher melting temperatures
of the hexagonal clusters and the systematic transitions
from cubic to hexagonal structures, but none from the
hexagonal to the cubic ones, seem to confirm that the
hexagonal symmetry is the more stable in this range of
temperatures.

3.1.1 Hexagonal varieties

An asymmetric variety where the hexagonal planes are in-
clined (ones in relation to the others) appears in some cir-
cumstances during the simulations. Figure 8 shows views
of this variety (see the symmetric structure in Figure 4
for comparison). This asymmetric variety is probably not
compatible with macroscopic sizes considering the geomet-
rical divergence of the hexagonal planes (see Fig. 8a). It
also seems quite systematic below 600 K, but it is also ob-
served, for example, at higher temperatures in the phase
coexistence of the 1728 ions aggregate.

From the double transition liquid → cubic + liquid →
hexagonal + liquid by slow freezing the 1000 ions cluster,
it is possible to discern other variety. Figures 9a and 9b
show that this new one also possesses the hexagonal sym-

(a) Hexagonal view (b) Cubic view

(c) Tangent view (d) Volumic perspective

Fig. 9. Views of the structure formed during the freezing of a
1000 ions LiCl droplet.

metry axes but it is faceted in a different manner (see
Figs. 9c and 9d).

4 Further analysis of the results

As two solid phases are observed, two kinds of critical
nuclei should be involved, differing in geometry, and in
internal and interfacial energies. The simulation results
will now be analysed by means of a solid-liquid coexistence
model reported elsewhere [29].

The key equation of the model is:

E = El(Tm) + (T − Tm)Cp − k3 ∆h Tm
3

n(Tm − T )3
(7)

which assumes that phase coexistence is attained when
the crystallite size becomes equal to the size of the critical
nucleus. Indeed, at fixed total energy, the critical nucleus
determines the state that maximises the entropy of the
system [14,53].

In the last equation, k is given by:

k =
4υ

2
3 σ

∆h
(8)

where υ is the specific volume of the solid, σ is the surface
tension of the solid-liquid interface, and

El(Tm) = E∞
l(Tm) + ςln

− 1
3 (9)

El(Tm) is the total energy of the cluster at, or projected to,
the bulk melting temperature, Tm. E∞

l(Tm) is the respective
bulk limit energy, ςl is the rate of change of the cluster
total energy with system size, n, and

∆h = ∆h∞ + ∆ςn− 1
3 (10)
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Table 4. Enthalpy of melting (in kJmol−1) and heat capacity
(in J K−1mol−1) for solid and liquid LiCl clusters at 650 K.

n Geom C
(s)
p C

(l)
p ∆h

1000 fcc 58.80 9.884
1728 fcc 60.12 71.82 10.69
2100 hex 59.54 10.95
2744 fcc 60.12 71.26 11.27
3456 hex 59.90 70.72 11.53
4096 fcc 69.82 11.71
5292 hex 60.47 11.95
exp − 61.70 65.02 19.83

∆h is the cluster enthalpy of melting, ∆h∞ is the respec-
tive bulk limit, and ∆ς is the rate of change of the melt-
ing enthalpy with system size. Solid-vapour and liquid-
vapour interfacial energies are implicitly considered in
equation (10) for the variation of the melting enthalpy
with system size.

Considering the proximity of the energy values in the
two solid phases (see Fig. 5), the same values of the pa-
rameters are used, for both phases, in equation (9). The
heat capacities are nearly the same for the two solid struc-
tures (see Tab. 4). This is not so for the values of Tm and
k∞ (the last is the limit of k when n → ∞, and depends
on υ and σ). That is to say, in the phase coexistence model
context, the bulk melting temperatures, Tm, and k∞ are
the essential parameters to distinguish the two phases.

Figure 10 contains the model predictions com-
pared with the simulation results. Tm = 850 K and
k∞ = 1.24 for the hexagonal phase, and Tm = 785 K
and k∞ = 1.00 for the cubic phase. The values
E∞

l(Tm) = −797.61 kJmol−1, ∆h∞ = 14.74 kJmol−1,
ςl = 67.376 kJmol−1, ∆ς = −48.564 kJmol−1 and
Cp = 65 J K−1 mol−1 have been used for both structures.

If extremely low heating rates were used, a transition
from the cubic to the hexagonal phase may be expected at
the starting melting temperature and energy of the cubic
structure. Nevertheless, due to the fact that closed shells
correspond to different numbers of ions, in the two sym-
metries, and to the limitations of the model in the early
stages of the melting, this prediction is presumably ex-
act only for the infinite system. That is to say, a phase
change from cubic to hexagonal structure is predicted for
bulk LiCl at ∼785 K.

In Figure 1 three “plateaus” are distinguishable in the
temperature evolution of initially cubic aggregates but,
from the previous analysis, only two fit in the present
model predictions and correspond to two distinct solid
phases. The other one, at the very beginning of the melt-
ing region, seems to be related to a pre-early melting pro-
cess of the cluster, even before the melting temperature
predicted by the model is attained. Hexagonal aggregates
with 2100 and 3456 ions show a small overheating rela-
tively to that temperature, followed by a visible under-
heating (see Fig. 10). For the hexagonal 5292 ions aggre-
gate pre-early melting also shows up similarly to the cubic
phase.
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Fig. 10. (Color online) Model predicted temperature (lines) as
a function of energy during the melting of initially cubic (1000,
1728, 2744 and 4096 ions) and initially hexagonal (1152, 2100,
3456 and 5292 ions) LiCl aggregates. Initially cubic 1000 ions
simulation data is not represented for clarity.

The average temperatures, along the coexistence re-
gions, show coarse periodicities, particularly for the
smaller clusters. Although further and longer calculations
are needed, most of these features are, presumably, a con-
sequence of the short timescales probed being insufficient
to cover the conformational rearrangements of the solid
portions. Those features are, indeed, suggestive that es-
tablishment of ergodicity is very slow in this regime.

Like in the systems with a single solid phase, hysteresis
cycles profiles are dependent on the heating/cooling rates.
In the present study, though, a more diversified behaviour
is observed due to the higher number of phases and the
wider heating/cooling rate sensitivity. In the 1000 ions
aggregate, for instance, a cycle with a path cubic → cubic
+ liquid → hexagonal + liquid → liquid during heating
and liquid → cubic + liquid → hexagonal + liquid →
hexagonal + glass during cooling is observed (see Fig. 1).

The simulation results based on the BMH potential,
the stability analysis of Figures 5 and 6, and the model
predictions, are consistent with the fact that the predicted



P.C.R. Rodrigues and F.M.S. Silva Fernandes: Cubic and hexagonal symmetries in LiCl nanoclusters 115

0 50 100 150 200
p (MPa)

-845

-840

G
 (

kJ
 m

ol
−1

)

U0
cub

 (MWG)

U0
cub

+V
cub

p  (BMH)

U0
hex

 (MWG)

U0
hex

+V
hex

p  (BMH)

Fig. 11. Gibbs energy at 0 K as a function of pressure for bulk
LiCl cubic and hexagonal structures.

bulk melting point of the hexagonal solid phase is nearer to
the experimental value than the one predicted for the bulk
cubic phase. Incidentally, preliminary calculations of the
LiCl bulk phase diagram [54] with the same potential, also
suggest a cubic-hexagonal transition and a higher melting
point of the hexagonal phase.

We have questioned if the stability relation of the cu-
bic and hexagonal structures can be inverted at non zero
pressures. As can be seen in Figure 11, this inversion is
only attained at ∼200 MPa (2000 bar) for bulk LiCl. Fur-
thermore, the Gibbs energy at the same conditions using
the MWG potential model (see Sect. 2) gives the cubic
phase as significantly more stable (see Fig. 11 and Tab. 5)
than the hexagonal one. This seems to confirm, as already
referred to before, that the BMH model is unrealistic for
bulk LiCl at low pressures, as far as a comparison with
experiment is concerned.

Finally, in view of the present results for LiCl clusters
using the BMH model, it appears that the ground states
of the present cluster sizes have cubic symmetry (in ac-
cordance with the suggestion of Croteau and Patey [39]
for clusters with more than 216 ions). Yet, this is not so
for cluster sizes �10 000 ions and the bulk, for which the
ground states have a slightly more stable hexagonal sym-
metry.

5 Concluding remarks

The Born-Mayer-Huggins potential has been used to sim-
ulate lithium chloride nanoclusters. Two distinct solid
structures, namely face centred cubic and hexagonal, have
been detected with notorious differences on their melting
behaviours.

A stability analysis of the clusters and bulk systems,
at 0 K, has been presented, using the BMH and the
MWG potential models. The cubic structure from the
BMH model is slightly more stable than the hexagonal
one for cluster sizes between 1000 and ∼10 000 ions. For
higher cluster sizes and bulk LiCl the opposite is true.
Moreover, at 0 K, the bulk cubic phase from the MWG

Table 5. Gibbs energy (in kJmol−1), at 0 K, as a function of
pressure (in MPa) for cubic and hexagonal structures of bulk
LiCl, from BMH and MWG potentials.

Cubic Hexagonal
p G p G

(BMH potential)
11.4040 −844.612 0.1346 −845.405
32.0908 −844.205 84.6591 −843.495
52.8358 −843.796
73.6392 −843.388
94.5010 −842.980

(MWG potential)
∼0 −846.464 ∼0 −840.828

potential is significantly more stable than the hexagonal
one. Thus, the BMH potential model seems unrealistic for
large clusters and the bulk as far as a comparison with
experiment is concerned.

A fairly good correlation of the simulation results has
been obtained by means of a theoretical model recently
reported by us.

We hope that a further analysis of the lithium chloride
melting and freezing, complemented by an extensive study
of other salts, currently in progress, should improve the
phase coexistence model. Additionally, the use of other
potential models for lithium chloride is among the per-
spectives for future developments.

One of us (P. Rodrigues) gratefully acknowledges the institu-
tional support of the Department of Chemistry and Biochem-
istry, FCUL, during his Ph.D. work. The authors thank Intel
Corporation for the free access to their compilers and the GNU
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